Shadow complexity of four-manifolds

Bruno Martelli

12 december 2017

(1)

(2)

(3)

Neghbourhoods of points in a simple polyhedron P

(1)

(2)

(3)

Neghbourhoods of points in a simple polyhedron P
$P \subset \operatorname{int}(M)$ is a spine if $M \backslash P$ consists of:

(1)

(2)

(3)

Neghbourhoods of points in a simple polyhedron P
$P \subset \operatorname{int}(M)$ is a spine if $M \backslash P$ consists of:

- an open collar of ∂M,

(1)

(2)

(3)

Neghbourhoods of points in a simple polyhedron P
$P \subset \operatorname{int}(M)$ is a spine if $M \backslash P$ consists of:

- an open collar of ∂M, and
- possibly some open balls.

(1)

(2)

(3)

Neghbourhoods of points in a simple polyhedron P
$P \subset \operatorname{int}(M)$ is a spine if $M \backslash P$ consists of:

- an open collar of ∂M, and
- possibly some open balls.

Examples: $S^{2} \subset S^{3}$ and $\mathbb{R P}^{2} \subset \mathbb{R} \mathbb{P}^{3}$.

From triangulations to spines:

From triangulations to spines:

The complexity $c(M)$ of a compact 3-manifold M is the minimum number of vertices in a simple spine of M [Matveev 1988].

The complexity $c(M)$ of a compact 3-manifold M is the minimum number of vertices in a simple spine of M [Matveev 1988].

- $c\left(M \# M^{\prime}\right)=c(M)+c\left(M^{\prime}\right)$

The complexity $c(M)$ of a compact 3 -manifold M is the minimum number of vertices in a simple spine of M [Matveev 1988].

- $c\left(M \# M^{\prime}\right)=c(M)+c\left(M^{\prime}\right)$
- $c\left(M_{S}\right) \leq c(M)$ for every incompressible $S \subset M$

The complexity $c(M)$ of a compact 3 -manifold M is the minimum number of vertices in a simple spine of M [Matveev 1988].

- $c\left(M \# M^{\prime}\right)=c(M)+c\left(M^{\prime}\right)$
- $c\left(M_{S}\right) \leq c(M)$ for every incompressible $S \subset M$
- There are finitely many irreducible, ∂-irreducible, anannular 3-manifolds M with fixed c

The complexity $c(M)$ of a compact 3-manifold M is the minimum number of vertices in a simple spine of M [Matveev 1988].

- $c\left(M \# M^{\prime}\right)=c(M)+c\left(M^{\prime}\right)$
- $c\left(M_{S}\right) \leq c(M)$ for every incompressible $S \subset M$
- There are finitely many irreducible, ∂-irreducible, anannular 3-manifolds M with fixed c
- For such manifolds, if $M \neq S^{3}, \mathbb{R}^{3}, L(3,1)$ then $c(M)$ is the minimum number of tetrahedra in a (ideal) triangulation of M

c	0	1	2	3	4	5	6	7	8	9	10	11	12
lens	3	2	3	6	10	20	36	72	136	272	528	1056	2080
other S^{3}	.	.	1	1	4	11	25	45	78	142	270	526	1038
\mathbb{R}^{3}	6
Nil	7	10	14	15	15	15	15
$\mathrm{SL}_{2} \mathbb{R}$	39	162	513	1416	3696	9324
Sol	5	9	23	39	83	149
$\mathbb{H}^{2} \times \mathbb{R}$	2	.	8	4	24
\mathbb{H}^{3}	4	25	120	459
non-geo	4	35	185	777	2921	10345
total $\mathbf{3}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{1 4}$	$\mathbf{3 1}$	$\mathbf{7 4}$	$\mathbf{1 7 5}$	$\mathbf{4 3 6}$	$\mathbf{1 1 5 4}$	$\mathbf{3 0 7 8}$	$\mathbf{8 4 2 1}$	$\mathbf{2 3 4 3 4}$	

The closed irreducible orientable 3-manifolds of complexity ≤ 12. From the atlas of 3-manifolds http://matlas.math.csu.ru

c	0	1	2	3	4	5	6	7	8	9	10	11	12
lens	3	2	3	6	10	20	36	72	136	272	528	1056	2080
other S^{3}	.	.	1	1	4	11	25	45	78	142	270	526	1038
\mathbb{R}^{3}	6
Nil	7	10	14	15	15	15	15
$\mathrm{SL}_{2} \mathbb{R}$	39	162	513	1416	3696	9324
Sol	5	9	23	39	83	149
$\mathbb{H}^{2} \times \mathbb{R}$	2	.	8	4	24
\mathbb{H}^{3}	4	25	120	459
non-geo	4	35	185	777	2921	10345
total $\mathbf{3}$	$\mathbf{2}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{1 4}$	$\mathbf{3 1}$	$\mathbf{7 4}$	$\mathbf{1 7 5}$	$\mathbf{4 3 6}$	$\mathbf{1 1 5 4}$	$\mathbf{3 0 7 8}$	$\mathbf{8 4 2 1}$	$\mathbf{2 3 4 3 4}$	

The closed irreducible orientable 3-manifolds of complexity ≤ 12.
From the atlas of 3-manifolds http://matlas.math.csu.ru
For the non-orientable ones with $c \leq 11$, see Regina [Burton]

Most graph manifolds have minimal spines of these types:

Most graph manifolds have minimal spines of these types:

Most graph manifolds have minimal spines of these types:

Seifert manifolds over S^{2} with three singular fibres

Most graph manifolds have minimal spines of these types:

Graph manifolds

Most graph manifolds have minimal spines of these types:

Graph manifolds

Proved for some infinite families [Jaco, Rubinstein, Tillmann 2009]

Three families of Seifert manifolds have more efficient spines:

$$
\begin{gathered}
\left(S^{2},(2,-1),(m+1,1),(n+1,1)\right) \\
m, n \geq 1
\end{gathered}
$$

Three families of Seifert manifolds have more efficient spines:

$$
\begin{gathered}
\left(S^{2},(2,-1),(m+1,1),(n+1,1)\right) \\
m, n \geq 1
\end{gathered}
$$

$\left(S^{2},(2,-1),(3,1),(n+5,1)\right)$
$n \geq 0$

$$
n \geq 0
$$

Three families of Seifert manifolds have more efficient spines:

$$
\begin{gathered}
\left(S^{2},(2,-1),(m+1,1),(n+1,1)\right) \\
m, n \geq 1
\end{gathered}
$$

$\left(S^{2},(2,-1),(3,1),(n+5,1)\right)$
$n \geq 0$

How can we encode a four-manifold combinatorially?

How can we encode a four-manifold combinatorially?

Triangulation

How can we encode a four-manifold combinatorially?

Kirby diagram

How can we encode a four-manifold combinatorially?

Kirby diagram

A shadow is a simple polyhedron $P \subset \operatorname{int}(M)$ such that:

A shadow is a simple polyhedron $P \subset \operatorname{int}(M)$ such that:

- P is locally flat.

A shadow is a simple polyhedron $P \subset \operatorname{int}(M)$ such that:

- P is locally flat.
- M is obtained from a regular neighbourhood of P by adding 3 - and 4-handles.

A shadow is a simple polyhedron $P \subset \operatorname{int}(M)$ such that:

- P is locally flat.
- M is obtained from a regular neighbourhood of P by adding 3- and 4-handles.

Every region f is equipped with a gleam in $\frac{1}{2} \mathbb{Z}$, and conversely the gleams determine M (Turaev 1994).

Every $\alpha \in H_{2}(M, \mathbb{Z})$ may be represented as

$$
\alpha=\sum_{f} \alpha_{f} f, \quad \alpha_{f} \in \mathbb{Z}_{3}
$$

where the sum is over oriented regions f.

Every $\alpha \in H_{2}(M, \mathbb{Z})$ may be represented as

$$
\alpha=\sum_{f} \alpha_{f} f, \quad \alpha_{f} \in \mathbb{Z}
$$

where the sum is over oriented regions f. We have

$$
\langle\alpha, \beta\rangle=\sum_{f} \alpha_{f} \beta_{f} \operatorname{gleam}(f)
$$

Every $\alpha \in H_{2}(M, \mathbb{Z})$ may be represented as

$$
\alpha=\sum_{f} \alpha_{f} f, \quad \alpha_{f} \in \mathbb{Z}
$$

where the sum is over oriented regions f. We have

$$
\langle\alpha, \beta\rangle=\sum_{f} \alpha_{f} \beta_{f} \operatorname{gleam}(f)
$$

In particular, if $\Sigma \subset P$ is a surface, then

$$
\Sigma \cdot \Sigma=\sum_{f \subset \Sigma} \operatorname{gleam}(f)
$$

S^{4}

S^{4}

$\mathbb{C P}^{2}$

S^{4}

$\mathbb{C P}^{2}$
$S^{2} \times S^{2}$

S^{4}

$\mathbb{C P}^{2}$

$S^{2} \times S^{2}$

The shadow complexity $c(M)$ of a compact 4-manifold M is the minimum number of vertices in a simple spine of M.

S^{4}

$\mathbb{C P}^{2}$

$S^{2} \times S^{2}$

The shadow complexity $c(M)$ of a compact 4-manifold M is the minimum number of vertices in a simple spine of M. Hence

$$
c\left(S^{4}\right)=c\left(\mathbb{C P}^{2}\right)=c\left(S^{2} \times S^{2}\right)=0
$$

Connected sum:

Connected sum:

$$
c\left(M \# M^{\prime}\right) \leq c(M)+c\left(M^{\prime}\right)
$$

Connected sum:

$$
c\left(M \# M^{\prime}\right) \leq c(M)+c\left(M^{\prime}\right)
$$

Let P thicken to M.

Connected sum:

$$
c\left(M \# M^{\prime}\right) \leq c(M)+c\left(M^{\prime}\right)
$$

Let P thicken to M. A shadow for the double $D M$ of M :

Connected sum:

$$
c\left(M \# M^{\prime}\right) \leq c(M)+c\left(M^{\prime}\right)
$$

Let P thicken to M. A shadow for the double $D M$ of M :

$c(D M) \leq c(M)$.

Theorem (M. 2011)

The closed orientable smooth four-manifolds M with $c(M)=0$ are precisely those of the type

$$
M=W \#_{h} \mathbb{C P}^{2}
$$

where W is the double of a thickening of a P with $c(P)=0$.

Theorem (M. 2011)

The closed orientable smooth four-manifolds M with $c(M)=0$ are precisely those of the type

$$
M=W \#_{h} \mathbb{C P}^{2}
$$

where W is the double of a thickening of a P with $c(P)=0$.

Double of a 4-thickening of $P \Longleftrightarrow$ Boundary of a 5-thickening of P

Theorem (M. 2011)

The closed orientable smooth four-manifolds M with $c(M)=0$ are precisely those of the type

$$
M=W \#_{h} \mathbb{C P}^{2}
$$

where W is the double of a thickening of a P with $c(P)=0$.

Double of a 4-thickening of $P \Longleftrightarrow$ Boundary of a 5-thickening of P
$\{$ 5-thickenings of $P\} \stackrel{w_{2}}{\longleftrightarrow} H^{2}\left(P, \mathbb{Z}_{2}\right)$

Theorem (M. 2011)

The closed orientable smooth four-manifolds M with $c(M)=0$ are precisely those of the type

$$
M=W \#_{h} \mathbb{C P}^{2}
$$

where W is the double of a thickening of a P with $c(P)=0$.

Double of a 4-thickening of $P \Longleftrightarrow$ Boundary of a 5-thickening of P

$$
\{\text { 5-thickenings of } P\} \stackrel{w_{2}}{\longleftrightarrow} H^{2}\left(P, \mathbb{Z}_{2}\right)
$$

Corollary
The simply connected ones are:

$$
S^{4}, \quad \#_{h} \mathbb{C P}^{2} \#_{k} \overline{\mathbb{C P}}^{2}, \quad \#_{h}\left(S^{2} \times S^{2}\right)
$$

Conjecture

The closed orientable smooth four-manifolds M with $c(M) \leq 1$ are precisely those of the type

$$
M=W \#_{h} \mathbb{C P}^{2}
$$

where W is the double of a thickening of a P with $c(P) \leq 1$, or of a P containing $\mathbb{R P}^{3}$.

Conjecture

The closed orientable smooth four-manifolds M with $c(M) \leq 1$ are precisely those of the type

$$
M=W \#_{h} \mathbb{C P}^{2}
$$

where W is the double of a thickening of a P with $c(P) \leq 1$, or of a P containing $\mathbb{R P}^{3}$.

We have $c\left(\mathbb{R P}^{3} \times S^{1}\right)=1$.

Conjecture

The closed orientable smooth four-manifolds M with $c(M) \leq 1$ are precisely those of the type

$$
M=W \#_{h} \mathbb{C P}^{2}
$$

where W is the double of a thickening of a P with $c(P) \leq 1$, or of a P containing $\mathbb{R P}^{3}$.

We have $c\left(\mathbb{R} \mathbb{P}^{3} \times S^{1}\right)=1$.
None of these four-manifolds is aspherical.

Still missing:

Still missing:

- More elaborate simply connected manifolds. We have $c(K 3) \leq 14$ [Costantino 2006].

Still missing:

- More elaborate simply connected manifolds. We have $c(K 3) \leq 14$ [Costantino 2006].
- Aspherical manifolds.

Still missing:

- More elaborate simply connected manifolds. We have $c(K 3) \leq 14$ [Costantino 2006].
- Aspherical manifolds.
- Manifolds of signature $h \neq 0$ that are not $M \not{ }_{h} \mathbb{C P}^{2}$.

Still missing:

- More elaborate simply connected manifolds. We have $c(K 3) \leq 14$ [Costantino 2006].
- Aspherical manifolds.
- Manifolds of signature $h \neq 0$ that are not $M \not{ }_{h} \mathbb{C P}^{2}$.
- Manifolds with intersection form $n E_{8} \oplus m H$.

Let P thicken to M. Let $S P$ be the singular part of P.

Let P thicken to M. Let $S P$ be the singular part of P. The boundary ∂M decomposes into:

- A circle bundle at every region of P.

Let P thicken to M. Let $S P$ be the singular part of P. The boundary ∂M decomposes into:

- A circle bundle at every region of P.
- A pair-of-pants bundle at every circle in $S P$.

Let P thicken to M. Let $S P$ be the singular part of P. The boundary ∂M decomposes into:

- A circle bundle at every region of P.
- A pair-of-pants bundle at every circle in $S P$.
- Cusped hyperbolic manifolds at the other components of $S P$. We get a Minsky block over every vertex of P :

Let P thicken to M. Let $S P$ be the singular part of P. The boundary ∂M decomposes into:

- A circle bundle at every region of P.
- A pair-of-pants bundle at every circle in $S P$.
- Cusped hyperbolic manifolds at the other components of $S P$. We get a Minsky block over every vertex of P :

[Costantino, D. Thurston 2008]

Goal: understand when $\partial M \cong \#_{h}\left(S^{2} \times S^{1}\right)$.

Goal: understand when $\partial M \cong \#_{h}\left(S^{2} \times S^{1}\right)$.

Goal: understand when $\partial M \cong \#_{h}\left(S^{2} \times S^{1}\right)$.

Use SnapPy [Weeks, Culler, Dunfield]

