Shadow complexity of four-manifolds

Bruno Martelli

12 december 2017

(ロ)、(型)、(E)、(E)、 E) の(の)

Neghbourhoods of points in a simple polyhedron P

イロト イ団ト イヨト イヨト 二日

Neghbourhoods of points in a simple polyhedron P

 $P \subset int(M)$ is a *spine* if $M \setminus P$ consists of:

Neghbourhoods of points in a simple polyhedron P

- $P \subset int(M)$ is a *spine* if $M \setminus P$ consists of:
 - an open collar of ∂M ,

Neghbourhoods of points in a simple polyhedron P

- $P \subset int(M)$ is a *spine* if $M \setminus P$ consists of:
 - an open collar of ∂M , and
 - possibly some open balls.

Neghbourhoods of points in a simple polyhedron P

- $P \subset int(M)$ is a *spine* if $M \setminus P$ consists of:
 - an open collar of ∂M , and
 - possibly some open balls.

Examples: $S^2 \subset S^3$ and $\mathbb{RP}^2 \subset \mathbb{RP}^3$.

From triangulations to spines:

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

From triangulations to spines:

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$c(M \# M') = c(M) + c(M')$$

(日) (日) (日) (日) (日) (日) (日) (日)

•
$$c(M \# M') = c(M) + c(M')$$

• $c(M_S) \leq c(M)$ for every incompressible $S \subset M$

•
$$c(M \# M') = c(M) + c(M')$$

- $c(M_S) \leq c(M)$ for every incompressible $S \subset M$
- ► There are finitely many irreducible, ∂-irreducible, anannular 3-manifolds M with fixed c

•
$$c(M \# M') = c(M) + c(M')$$

- $c(M_S) \leq c(M)$ for every incompressible $S \subset M$
- ► There are finitely many irreducible, ∂-irreducible, anannular 3-manifolds M with fixed c
- For such manifolds, if M ≠ S³, ℝP³, L(3, 1) then c(M) is the minimum number of tetrahedra in a (ideal) triangulation of M

С	0	1	2	3	4	5	6	7	8	9	10	11	12
lens	3	2	3	6	10	20	36	72	136	272	528	1056	2080
other S^3			1	1	4	11	25	45	78	142	270	526	1038
\mathbb{R}^3							6						
Nil							7	10	14	15	15	15	15
$\mathrm{SL}_2\mathbb{R}$								39	162	513	1416	3696	9324
Sol								5	9	23	39	83	149
$\mathbb{H}^2 \! \times \! \mathbb{R}$									2		8	4	24
\mathbb{H}^3										4	25	120	459
non-geo								4	35	185	777	2921	10345
total	3	2	4	7	14	31	74	175	436	1154	3078	8421	23434

The closed irreducible orientable 3-manifolds of complexity ≤ 12 . From the atlas of 3-manifolds http://matlas.math.csu.ru

С	0	1	2	3	4	5	6	7	8	9	10	11	12
lens	3	2	3	6	10	20	36	72	136	272	528	1056	2080
other S^3			1	1	4	11	25	45	78	142	270	526	1038
\mathbb{R}^3							6						
Nil							7	10	14	15	15	15	15
$\mathrm{SL}_2\mathbb{R}$								39	162	513	1416	3696	9324
Sol								5	9	23	39	83	149
$\mathbb{H}^2 \! \times \! \mathbb{R}$									2		8	4	24
\mathbb{H}^3										4	25	120	459
non-geo								4	35	185	777	2921	10345
total	3	2	4	7	14	31	74	175	436	1154	3078	8421	23434

The closed irreducible orientable 3-manifolds of complexity ≤ 12 . From the atlas of 3-manifolds http://matlas.math.csu.ru For the non-orientable ones with $c \leq 11$, see *Regina* [Burton]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lens spaces

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Proved for some infinite families [Jaco, Rubinstein, Tillmann 2009]

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Three families of Seifert manifolds have more efficient spines:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Three families of Seifert manifolds have more efficient spines:

◆□ > ◆□ > ◆三 > ◆三 > 三 の < ⊙

Three families of Seifert manifolds have more efficient spines:

The third family yields $(S^2, (2, -1), (3, 1), (p, q))$ with p/q > 5. [Martelli, Petronio 2000].

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Triangulation

Kirby diagram

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Triangulation

No need to draw 3- and 4-handles (Laudenbach, Poenaru 1972)

・ロト・日本・モト・モート ヨー うへで

► *P* is locally flat.

- ► P is locally flat.
- ► *M* is obtained from a regular neighbourhood of *P* by adding 3- and 4-handles.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- ► P is locally flat.
- *M* is obtained from a regular neighbourhood of *P* by adding 3- and 4-handles.

Every region f is equipped with a gleam in $\frac{1}{2}\mathbb{Z}$, and conversely the gleams determine M (Turaev 1994).

Every $\alpha \in H_2(M,\mathbb{Z})$ may be represented as

$$\alpha = \sum_{f} \alpha_{f} f, \qquad \alpha_{f} \in \mathbb{Z}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

where the sum is over oriented regions f.

Every $\alpha \in H_2(M,\mathbb{Z})$ may be represented as

$$\alpha = \sum_{f} \alpha_{f} f, \qquad \alpha_{f} \in \mathbb{Z}$$

where the sum is over oriented regions f. We have

$$\langle \alpha, \beta \rangle = \sum_{f} \alpha_{f} \beta_{f} \text{gleam}(f).$$

Every $\alpha \in H_2(M,\mathbb{Z})$ may be represented as

$$\alpha = \sum_{f} \alpha_{f} f, \qquad \alpha_{f} \in \mathbb{Z}$$

where the sum is over oriented regions f. We have

$$\langle \alpha, \beta \rangle = \sum_{f} \alpha_{f} \beta_{f} \text{gleam}(f).$$

In particular, if $\Sigma \subset P$ is a surface, then

$$\Sigma \cdot \Sigma = \sum_{f \subset \Sigma} \operatorname{gleam}(f).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 S^4

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 S^4

 \mathbb{CP}^2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 S^4

 \mathbb{CP}^2

 $S^2 \times S^2$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The shadow complexity c(M) of a compact 4-manifold M is the minimum number of vertices in a simple spine of M.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The shadow complexity c(M) of a compact 4-manifold M is the minimum number of vertices in a simple spine of M. Hence

$$c(S^4) = c(\mathbb{CP}^2) = c(S^2 \times S^2) = 0.$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 – のへ⊙

Connected sum:

Connected sum:

 $c(M\#M') \leq c(M) + c(M').$

・ロト ・ 一 ト ・ モト ・ モト

æ.

Connected sum:

$$c(M\#M') \leq c(M) + c(M').$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Let P thicken to M.

Connected sum:

 $c(M\#M') \leq c(M) + c(M').$

Let P thicken to M. A shadow for the double DM of M:

Connected sum:

 $c(M\#M') \leq c(M) + c(M').$

Let P thicken to M. A shadow for the double DM of M:

 $c(DM) \leq c(M).$

<ロ> (四) (四) (三) (三) (三)

The closed orientable smooth four-manifolds M with c(M) = 0 are precisely those of the type

$$M = W \#_h \mathbb{CP}^2$$

where W is the double of a thickening of a P with c(P) = 0.

The closed orientable smooth four-manifolds M with c(M) = 0 are precisely those of the type

$$M = W \#_h \mathbb{CP}^2$$

where W is the double of a thickening of a P with c(P) = 0.

Double of a 4-thickening of $P \iff$ Boundary of a 5-thickening of P

(日) (日) (日) (日) (日) (日) (日) (日)

The closed orientable smooth four-manifolds M with c(M) = 0 are precisely those of the type

$$M = W \#_h \mathbb{CP}^2$$

where W is the double of a thickening of a P with c(P) = 0.

Double of a 4-thickening of $P \iff$ Boundary of a 5-thickening of P $\{ 5-\text{thickenings of } P \} \stackrel{w_2}{\longleftrightarrow} H^2(P, \mathbb{Z}_2)$

The closed orientable smooth four-manifolds M with c(M) = 0 are precisely those of the type

$$M = W \#_h \mathbb{CP}^2$$

where W is the double of a thickening of a P with c(P) = 0.

Double of a 4-thickening of $P \iff$ Boundary of a 5-thickening of P $\{ 5-\text{thickenings of } P \} \stackrel{W_2}{\longleftrightarrow} H^2(P, \mathbb{Z}_2)$

Corollary

The simply connected ones are:

$$S^4$$
, $\#_h \mathbb{CP}^2 \#_k \overline{\mathbb{CP}}^2$, $\#_h (S^2 \times S^2)$.

Conjecture

The closed orientable smooth four-manifolds M with $c(M) \leq 1$ are precisely those of the type

$$M = W \#_h \mathbb{CP}^2$$

where W is the double of a thickening of a P with $c(P) \leq 1$, or of a P containing \mathbb{RP}^3 .

Conjecture

The closed orientable smooth four-manifolds M with $c(M) \leq 1$ are precisely those of the type

$$M = W \#_h \mathbb{CP}^2$$

where W is the double of a thickening of a P with $c(P) \leq 1$, or of a P containing \mathbb{RP}^3 .

We have $c(\mathbb{RP}^3 \times S^1) = 1$.

Conjecture

The closed orientable smooth four-manifolds M with $c(M) \leq 1$ are precisely those of the type

$$M = W \#_h \mathbb{CP}^2$$

where W is the double of a thickening of a P with $c(P) \leq 1$, or of a P containing \mathbb{RP}^3 .

We have $c(\mathbb{RP}^3 \times S^1) = 1$.

None of these four-manifolds is aspherical.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

More elaborate simply connected manifolds. We have c(K3) ≤ 14 [Costantino 2006].

・ロト・日本・モト・モート ヨー うへで

► More elaborate simply connected manifolds. We have c(K3) ≤ 14 [Costantino 2006].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Aspherical manifolds.

- More elaborate simply connected manifolds. We have c(K3) ≤ 14 [Costantino 2006].
- Aspherical manifolds.
- Manifolds of signature $h \neq 0$ that are not $M \#_h \mathbb{CP}^2$.

- More elaborate simply connected manifolds. We have c(K3) ≤ 14 [Costantino 2006].
- Aspherical manifolds.
- Manifolds of signature $h \neq 0$ that are not $M \#_h \mathbb{CP}^2$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Manifolds with intersection form $nE_8 \oplus mH$.

Let P thicken to M. Let SP be the singular part of P.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

• A circle bundle at every region of *P*.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- A circle bundle at every region of *P*.
- A pair-of-pants bundle at every circle in SP.

- A circle bundle at every region of *P*.
- A pair-of-pants bundle at every circle in SP.
- Cusped hyperbolic manifolds at the other components of SP.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

We get a *Minsky block* over every vertex of *P*:

- A circle bundle at every region of *P*.
- A pair-of-pants bundle at every circle in SP.
- Cusped hyperbolic manifolds at the other components of SP.

We get a *Minsky block* over every vertex of *P*:

(日) (同) (日) (日)

[Costantino, D. Thurston 2008]

Goal: understand when $\partial M \cong \#_h(S^2 \times S^1)$.

Goal: understand when $\partial M \cong \#_h(S^2 \times S^1)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Goal: understand when $\partial M \cong \#_h(S^2 \times S^1)$.

・ロト ・四ト ・ヨト ・ヨト

Use SnapPy [Weeks, Culler, Dunfield]